Содержание
- 1 Самодельный выравниватель тока: характеристики
- 2 Где купить стабилизатор напряжения 220 В для дома?
- 3 Стабилизаторы напряжения
- 4 Условия использования
- 5 Полисиликатные и силикатные краски
- 6 Основные преимущества и недостатки
- 7 Как работает стабилизатор напряжения
- 8 Зачем нужны стабилизаторы напряжения и его важность
- 9 Где лучше всего установить стабилизатор
- 10 Установка стабилизатора напряжения электриком
- 11 Какой принцип работы у стабилизаторов с двойным преобразованием?
- 12 Какие виды стабилизаторов подходят для дома
- 13 Особенности работы
- 14 Принцип работы симисторных стабилизаторов
- 15 Высокочастотные модели стабилизаторов
- 16 Инверторные стабилизаторы
- 17 Как пользоваться инерционным стабилизатором
- 18 Устранение помех
Самодельный выравниватель тока: характеристики
Стабилизатор характеризуется двумя параметрами:
- Допустимый диапазон вводимого напряжения (Uвх);
- Допустимый диапазон выводимого напряжения (Uвых).
В этой статье рассматривается симисторный преобразователь тока, потому что он обладает высокой эффективностью. Для него Uвх составляет 130-270В, а Uвых – 205-230В. Если большой диапазон входного напряжения – это преимущество, то для выходного – это недостаток.
Однако для бытовой техники этот диапазон остается допустимым. Это легко проверить, потому что допустимыми колебаниями вольтажа являются скачки и провалы не более 10%. А это 22,2 Вольта в большую или меньшую сторону. Значит допустимо изменение вольтажа от 197,8 до 242,2 Вольта. По сравнению с этим диапазоном ток на нашем симисторном стабилизаторе получается еще ровнее.
Подходит устройство для подключения к линии нагрузкой не больше 6 кВт. Ее переключение осуществляется за 0,01 секунды.
Где купить стабилизатор напряжения 220 В для дома?
Еще сравнительно недавно подобное оборудование можно было приобрести только в специализированных магазинах. Но на сегодняшний день намного дешевле будет сделать такую покупку через интернет. К примеру, если приобрести стабилизатор напряжения 220 В для телевизора, цена в онлайн-магазине составит всего около 1000—1500 руб. Но стоит заметить, что необходимо тщательно изучить отзывы о продавце, чтобы не попасть в лапы к мошенникам или не купить некачественный товар.
А бывают и нестандартные формы стабилизаторов напряжения 220В
Без сомнения, подобные устройства порой бывают просто необходимы. Однако к их выбору стоит подойти продуманно и взвешенно. И тогда оборудование прослужит Вам долгие годы, защищая бытовую технику от перепадов напряжения.
Стабилизаторы напряжения
Начнем рассмотрение со стабилизаторов питающего напряжения и по порядку рассмотрим вначале преимущества, а затем недостатки применения этого типа устройств.
Преимущества стабилизаторов напряжения
1. Обеспечивают постоянное стабильное напряжение для питания наших электроприборов 220 В. Стабилизаторы сглаживают скачки и небольшие колебания питающего напряжения, выдавая на выходе стабильное напряжение 220 В.
При снижении напряжения обычно ниже 160 В, либо при превышении им значения 280 В, стабилизаторы отключаются от внешней питающей сети и обесточивают внутренних потребителей. Тем самым предохраняя электроприборы от выхода из строя.
2. Подключенное через стабилизаторы напряжения оборудование остается работоспособным. Такие электроприборы, как аудио- и видеотехника очень чувствительны к отклонениям питающего напряжения. Повреждение этих приборов такие колебания напряжения не вызывают, но могут сказываться на качестве его работы. Применение стабилизатора обеспечивает надежную работоспособность такого оборудования.
3. При применении стабилизаторов напряжения прекращают мерцать электрические лампочки. Это существенно продлевает срок их службы.
Недостатки стабилизаторов напряжения
1. Большие габариты. В большинстве случаев стабилизаторы напряжения довольно громоздки, и для их установки необходимо выделять дополнительное место. Габариты зависят от мощности подключаемой нагрузки. Чем больше мощность, тем больше габариты применяемого стабилизатора.
Во время своей работы эти устройства нагреваются, поэтому им необходимо достаточное место для эффективного охлаждения корпуса самого стабилизатора, и его внутренних элементов.
В трехфазных электрических сетях обычно применяют три отдельных стабилизатора напряжения, установленных в каждую фазу. Если устанавливать один трехфазный стабилизатор, то в случае короткого замыкания или пропадания одной из фаз, стабилизатор отключится.
Все однофазные потребители, подключенные к любой из фаз будут обесточены до тех пор, пока не восстановятся нормальные условия работы стабилизатора. Это очень неудобно, поэтому чаще применяется установка трех отдельных стабилизаторов напряжения в каждую из фаз. А это в свою очередь значительно увеличивает габариты.
2. Цена. Покупка хорошего стабилизатора напряжения может обойтись в приличную сумму денег.
Стабилизаторы намного дороже, чем реле контроля напряжения. В большинстве случаев стоимость является решающим фактором при выборе устройств защиты, и большинство пользователей склоняются в стороны приобретения реле напряжения.
3. Стабилизаторы чувствительны к пыли и влажности помещения, в котором они установлены. Внутри стабилизатора находится трансформатор, большое электромагнитное поле, которое притягивает пыль. Поэтому место установки должно быть хорошо защищено от пыли и влаги.
4. Чувствительность стабилизаторов напряжения к различным электрическим помехам. Если в электрической сети часты электрические помехи, это приведет к тому, что электроника стабилизаторов начнет «глючить», они могут отключиться, обесточивая тем самым всю квартиру.
Условия использования
Стоит сказать о том, что инверторные стабилизаторы напряжения достаточно неприхотливы к среде своей работы. Это лучше всего заметно на таких параметрах, как окружающая температура и влажность. Множество моделей способно без проблем функционировать при температурном диапазоне от -40 до +40 градусов по Цельсию. Уровень влажности не должен превышать отметку в 95 % процентов. Естественно, что во время работы стабилизатор не должен соприкасаться с водой. Также нужно следить, чтобы она не попала вовнутрь, как и горюче-смазочные материалы. Стоит отметить, что появление конденсата внутри может вывести прибор из строя, а потом стоит следить за разницей температур. Если он все же начал появляться, то прибор стоит отключить до тех пор, пока влага не испарится.
Полисиликатные и силикатные краски
Силикатные краски достаточно устойчивы к воздействию влаги по сравнению с известковыми красками, но имеют почти идентичную хорошую паропроницаемость. Они обладают высокой прочностью, сопротивляются возникновению плесени и вредному влиянию атмосферных факторов. Силикатные краски отличаются очень высокой устойчивостью к загрязнению, покрытие не электризуется. В продаже представлен довольно ограниченный диапазон цветов.
Силикатные краски отталкивают воду
Полисиликатные краски — современный инновационный тип силикатных красок, образованный путём обогащения их различными смолами. Такие краски гораздо легче применять. Они имеют отличнейшую водостойкость, высокую паропроницаемость и, в отличие от предшественников, совместимы с органической штукатуркой.
Фасад здания, покрашенный силикатными красками
Расход полисиликатной краски – 140-150 г/м².
Силикатная фасадная краска Ceresit CT 54
Основные преимущества и недостатки
При сравнении технических характеристик инверторных стабилизаторов напряжения с характеристиками стабилизаторов других типов, хорошо заметно преимущество электронных устройств.
К достоинствам стабилизаторов двойного преобразования можно отнести следующее:
- Работа в большом диапазоне сетевых напряжений;
- Синусоидальная форма напряжения;
- Высокая скорость стабилизации;
- Точность выходных параметров;
- Полное подавление импульсных помех;
- Компактность устройства.
Электронная схема стабилизатора напряжения позволяет ему корректно работать при достаточно большом разбросе величины входного напряжения. Инверторные стабилизаторы напряжения для дома обеспечивают отличные выходные характеристики при колебаниях напряжения на входе в пределах 115-290 вольт. У разных моделей этот показатель может несколько отличаться.
Электронный стабилизатор для дома инверторного типа обеспечивает на выходе практически идеальную синусоиду, в то время как устройства другого типа могут выдавать аппроксимированную (ступенчатую) синусоиду или меандр, что категорически неприемлемо для работы многих устройств.
Поскольку в схеме устройства отсутствуют электромеханические узлы, автоматика инверторного стабилизатора обеспечивает практически мгновенную реакцию на изменения входного напряжения. Это время не превышает нескольких микросекунд и определяется только переходными процессорами в транзисторах.
Применение микроконтроллера с кварцевым генератором позволяет добиться исключительно высоких параметров напряжения и частоты на выходе стабилизатора. Отклонение напряжения от номинальной величины в 220В обычно не превышает 1%, а частоты не более 0,5%.
Индуктивно-ёмкостные фильтры практически полностью подавляют весь спектр импульсных помех, а так же устраняют кратковременные пиковые выбросы напряжения. Благодаря отсутствию мощного силового трансформатора удалось снизить до минимума вес и габариты устройства. От перегрузок стабилизатор защищает входной автоматический выключатель и быстродействующая электронная защита, иногда оснащённая звуковой сигнализацией.
Основными недостатками инверторных стабилизаторов можно считать высокую цену. Кроме того, электронные компоненты нагреваются в процессе работы и требуют воздушного охлаждения. Для этой цели применяются компактные вентиляторы, которые издают небольшой шум, но это трудно назвать существенным недостатком.
Как работает стабилизатор напряжения
Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: функции понижения и повышения напряжения.
Функция понижения и повышения — это не что иное, как регулирование постоянного напряжения от перенапряжения.
Эта функция может выполняться вручную с помощью селекторных переключателей или автоматически с помощью дополнительных электронных схем.
В условиях перенапряжения функция «понижения напряжения» обеспечивает необходимое снижение интенсивности напряжения. Аналогично, в условиях пониженного напряжения функция «повышения напряжения» увеличивает интенсивность напряжения. Идея обеих функций в целом заключается в том, чтобы поддерживать одинаковое выходное напряжение.
Рис. 4 — Принципиальная схема функции понижения в стабилизаторе напряжения
На приведенном выше рисунке показано подключение трансформатора в функции «Понижения». В функции понижения полярность вторичной катушки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом вычитания напряжения первичной и вторичной катушек.
В стабилизаторе напряжения есть схема переключения. Всякий раз, когда обнаруживается превышение напряжения в первичном источнике питания, подключение нагрузки вручную или автоматически переключается в конфигурацию режима «Понижения» с помощью переключателей (реле).
Рис. 6 — Принципиальная схема функции повышения напряжения в стабилизаторе напряжения
На рисунке выше показано подключение трансформатора в функции «Повышения». В функции повышения полярность вторичной обмотки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом сложения напряжения первичной и вторичной обмоток.
Зачем нужны стабилизаторы напряжения и его важность
Все электрические устройства спроектированы и изготовлены для работы с максимальной эффективностью с типичным источником питания, который известен как номинальное рабочее напряжение. В зависимости от расчетного безопасного предела эксплуатации рабочий диапазон (с оптимальной эффективностью) электрического устройства может быть ограничен до ± 5%, ± 10% или более.
Из-за многих проблем источник входного напряжения, которое мы получаем, всегда имеет тенденцию колебаться, что приводит к постоянно меняющемуся источнику входного напряжения. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.
Рис. 2 — Проблемы из-за колебаний напряжения
Где лучше всего установить стабилизатор
Место установки выбирается в зависимости от габаритов самого прибора. А размеры зависят от мощности агрегата. К примеру, маломощный стабилизатор можно установить прямо около подключаемой к нему аппаратуре, где-то на столе или на полу. Мощный прибор лучше установить в специально организованном месте, к примеру, в нише или в распределительном щитке.
Требования к установке:
- Вентиляционные отверстия в приборе всегда должны оставаться свободными, не закрытыми. В процессе работы стабилизатор нагревается, поэтому ему всегда нужен охлажденный воздух.
- Нельзя устанавливать стабилизаторы напряжения в подвалах, гаражах, на чердаках и схожих с этими помещениями комнатах. Все дело в том, что любые электронные приборы быстро выходят из строя, если в помещениях, где они установлены, высокая влажность, скопление пыли, повышенная температура и другие негативные факторы.
- Оптимальное место установки – в самом распределительном щите или рядом. Чем меньше длина питающего кабеля, тем лучше.
Установка стабилизатора напряжения электриком
Установку стабилизатора напряжения должен производить квалифицированный электрик
Не пробуйте сами! Не зная элементарных мер предосторожности при работе с электричеством может привести к опасным последствиям
Подключение однофазного стабилизатора
Данная схема подходит для любых однофазных стабилизаторов напряжения.
Перед началом работ обесточьте оборудование. В распределительном щите разрывается фазный провод. Провод поступающий с входного автомата подать на вход стабилизатора напряжения. Мощность данного автомата должна быть не меньше мощности стабилизатора.
Выходной провод со стабилизатора напряжения подается в нагрузку. Нулевой провод добавляется на клеммную колодку или скрутку. В стабилизаторах других производителей используется четыре провода для подключения. Это подается ноль на вход стабилизатора напряжения, и ноль с выхода.
Перед включением проверьте правильность соединения проводов. Обесточьте нагрузку (отключив распределительные автоматы, если их нет, то выключить все приборы из розеток). Включите стабилизатор напряжения. Проверьте питание на входе стабилизатора и на выходе.
Если напряжение в пределах паспортных характеристик стабилизатора напряжения, то подключить нагрузку. После подключения нагрузки проверьте уровень нагрузки.
Чтобы мощность нагрузки не превышала мощности стабилизатора напряжения. Раз в год необходимо подтягивать винтовые и болтовые соединения. Плохой контакт или плохо затянутый контакт, может привести к выходу из строя изоляции провода или к пожару.
Подключение трехфазного стабилизатора
Трехфазные стабилизаторы отличаются от однофазных лишь количеством линий стабилизации.
Фактически вы можете использовать три однофазных прибора (одного типа и мощности), соединив их параллельно друг другу (по фазам) и последовательно для потребителя, к ним подключаемого.
Нейтральные клеммы на входе соединяются друг с другом. То же самое делается на выходе. В результате получается, что и в сторону сети, и в сторону потребителя приборы подключены по схеме «звезда».
После включения трехфазного стабилизатора в сеть, обязательно проверьте выходные напряжения. Они должны соответствовать паспортным характеристикам. Обязательно проводите профилактику винтовым или болтовым соединениям проводов.
Какой принцип работы у стабилизаторов с двойным преобразованием?
Работа инверторных стабилизаторов построена на основе успешно применяемого в ИБП топологии on-line принципа двойного преобразования энергии (рисунок 2).
Рисунок 2 – Принцип работы инверторного стабилизатора напряжения
Выпрямитель выполняет первое преобразование – делает из входного переменного напряжения промежуточное постоянное, поступающие затем в накопитель-конденсатор, а после на инвертор.
Инвертор производит второе преобразование и превращает промежуточное постоянное напряжение вновь в переменное.
При таком алгоритме работы форма и величина генерируемого инвертором конечного (выходного) напряжения не зависят от величины и формы исходного (входного) напряжения. Благодаря этому устройства с двойным преобразованием энергии исключают влияние сетевых проблем на качество выходного сигнала, а значит и на работу подключенного к ним оборудования.
Другая важная особенность данной схемы – безостановочное регулирование входного напряжения и, как следствие, отсутствие задержек при реагировании на его колебания. Для стабилизации напряжения устройству с двумя последовательными преобразованиями не требуется совершать каких-либо дополнительных действий помимо непрерывной и независящей от качества питающей сети работы выпрямителя и инвертора.
Какие виды стабилизаторов подходят для дома
Назначение стабилизатора это автоматическое поддержание напряжения на выходе в заданных параметрах, независимо от изменений в питающей сети. С этой задачей современные устройства справляются успешно. Каждый вид имеет характерные особенности. Стабилизаторы применяются в быту и используются в промышленности. Для электроснабжения дома, квартиры и дачи подходят следующие стабилизаторы:
- Электронные;
- Релейные;
- Сервоприводные (Электромеханические);
- Инверторные;
- Гибридные.
Электронные. Основные составляющие — трансформатор, микропроцессор и полупроводники. Микропроцессор анализирует напряжение и посредством тиристоров или симисторов переключает обмотки трансформатора. На выходе получаем стабильное напряжение, заданных параметров. Широко используются в быту и зарекомендовали себя как надежные и точные устройства.
Достоинства полупроводниковых приборов:
- быстродействие;
- большой диапазон напряжения сети;
- бесшумность;
- надёжная система защиты;
- компактность;
- длительный срок службы.
Недостатки:
- зависимость мощности от напряжения – чем ниже входящее напряжение, тем меньшую мощность может обеспечить стабилизатор;
- ступенчатое регулирование (почти не заметно).
Релейные. Получили популярность благодаря дешевизне и простой конструкции. В них микропроцессор с помощью реле управляет переключением обмоток трансформатора. Поэтому при работе этих стабилизаторов слышно характерное пощелкивание.
Достоинствами релейных устройств являются:
- размеры;
- низкая стоимость;
- широкий диапазон температуры окружающей среды;
- терпимость к краткосрочным перегрузкам.
Недостатки:
- низкая скорость реагирования;
- ступенчатое регулирование;
- создание электромагнитных помех;
- шум;
- частые отказы в послегарантийный период;
- относительно небольшой срок службы.
Сервоприводные (Электромеханические). Бесступенчатую стабилизацию обеспечивает электродвигатель перемещающий графитовый контакт по обмоткам трансформатора. Из-за особенностей конструкции подходят для работы в сетях без резких изменений (скачков) напряжения.
Достоинства:
- высокая точность;
- плавное регулирование;
- большой диапазон входящего напряжения;
- возможность работы при отрицательной температуре;
- стойкость к перегрузкам;
- низкая стоимость.
Недостатки:
- низкая скорость регулирования;
- размер и вес;
- повышенный уровень шума;
- электромагнитные помехи;
- наличие графитового контакта и подвижных частей подверженных износу.
Инверторные. Самый прогрессивный тип стабилизаторов. В этих устройствах отсутствует трансформатор. Стабилизируют напряжение полупроводники и конденсаторы посредством двойного преобразования электрической энергии. Переменный ток из подающей сети преобразовывается в постоянный, затем инвертором в переменный. На выходе получаем стабильное напряжение с отличными параметрами.
Достоинства инверторных устройств:
- высокая точность;
- большая скорость;
- плавность регулирования;
- надежная защита стабилизатора и потребителей;
- очень большой диапазон входящего напряжения;
- небольшие размеры и вес;
- минимальный уровень шума;
- длительный срок эксплуатации.
Недостатки:
- отсутствие запаса мощности;
- высокая стоимость.
Гибридные. В зависимости от условий работы может включаться релейная или сервоприводная (электромеханическая) стабилизация. Объединяет плюсы и минусы соответствующих типов приборов. Отличаются высокой ценой, сложностью конструкции и обслуживания.
Особенности работы
Работа этого устройства считается достаточно простой. Это устройство способно регулировать ток ступенчато. В результате этого при подключении обмотки ток будет увеличиваться или уменьшаться на определенную величину. Иногда их уровень может не соответствовать норме. Подобное последовательное срабатывание может вызывать дополнительные скачки напряжения.
Если детально изучить его работу, тогда можно будет понять, что реле быстро переключает обмотки. В результате этого скачки напряжения считаются незначительными. Их заметность может возникнуть в результате скачков входного тока. Если вы используете высокоточное оборудование, тогда техника может выйти из строя. Постоянная подача тока будет практически невозможной.
Если вы посмотрите напряжение и дисплей будет показывать 220 Вольт, тогда возможно вы попали на плохого производителя. Производители могут специально запрограммировать устройство, чтобы оно постоянно показывало 220 Вольт.
Обычно для стабилизации напряжения прибору необходимо тратить до 0,15 секунд. Релейные стабилизаторы также могут прекращать подачу выходного тока. Это может произойти в том случае, когда на входе появляется минимально допустимый ток. Если напряжение стабилизируется, тогда стабилизатор возобновит свою работу. Восстановление тока происходит в течение 0.6 секунд. У нас вы можете прочесть про защиту электропроводки помощью стабилизатора.
Принцип работы симисторных стабилизаторов
Работа симисторных стабилизаторов похожа на работу релейных устройств. Отличие составляет узел переключения обмоток трансформатора. Вместо реле у симисторных устройств переключение обмоток происходит мощными симисторами или тиристорами. Контроллер управляют работой симисторов.
Симисторное управление обмотками не имеет контактов, поэтому отсутствуют щелчки. Автотрансформатор намотан медным проводом. Эти стабилизаторы могут работать с пониженным напряжением от 90 В и высоким напряжением до 300 В. Точность регулировки напряжения может достичь 2%, что не вызывает моргание ламп.
Однако ЭДС самоиндукции во время переключения симисторами также имеет место, как и у релейных устройств. Так как симисторные ключи очень чувствительны к перегрузкам, им необходимо иметь запас по мощности. Такие устройства стабилизаторов напряжения имеют тяжелый температурный режим.
Схема работы симисторного стабилизатора
Поэтому симисторы ставятся на радиаторы с принудительным охлаждением вентиляторами. Работа этого вида устройства осуществляется по заводской программе, которая имеет неприятность ошибаться при эксплуатации.
В этом случае поможет только заводской ремонт. Стоимость таких стабилизаторов, на мой взгляд, завышена. Существуют симисторные стабилизаторы марки Volter с высокой степенью точности. Принцип работы этих стабилизаторов напряжения осуществляется по двухступенчатой системе. Первая ступень регулирует выходное напряжение грубо, а вторая степень имеет точную регулировку выходного напряжения.
Схема работы двухступеньчатого стабилизатора Volter
Один контроллер управляет двумя ступенями. По сути это два стабилизатора в одном корпусе. Обмотки обеих ступеней намотаны на одном трансформаторе. При 12 ключах двух ступеней стабилизатор имеет 36 уровней регулировки выходного напряжения, чем и достигается высокая точность выходного напряжения.
Высокочастотные модели стабилизаторов
По сравнению с релейными моделями, высокочастотный стабилизатор напряжения (схема показана ниже) является более сложным, и диодов в нем задействуется больше двух. Отличительной особенность приборов данного типа принято считать высокую мощность.
Трансформаторы в цепи рассчитаны на большие помехи. В результате данные приборы способны защитить любую бытовую технику в доме. Система фильтрации в них настроена на различные скачки. За счет контроля напряжения величина тока может изменяться. Показатель предельной частоты при этом будет увеличиваться на входе, и уменьшаться на выходе. Преобразование тока в этой цепи осуществляется в два этапа.
Первоначально задействуется транзистор с фильтром на входе. На втором этапе включается диодный мост. Для того чтобы процесс преобразования тока завершился, системе требуется усилитель. Устанавливается он, как правило, между резисторами. Таким образом, температура в устройстве поддерживается на должном уровне. Дополнительно в системе учитывается источник питания. Использование блока защиты зависит от его работы.
Инверторные стабилизаторы
Современные инверторные стабилизаторы Штиль серии «Инстаб» Это наиболее «молодой» вид стабилизаторов – серийное производство начато в конце 2000-х годов. Инновационная конструкция и характеристики, недоступные для моделей других топологий, делают данные устройства прорывом в стабилизации электрической энергии.
Устройство и принцип работы.
Принцип действия данных устройств схож с on-line ИБП и построен на базе прогрессивной технологии двойного преобразования энергии. Сначала выпрямитель превращает входное переменное напряжение в постоянное, которое затем накапливается в промежуточных конденсаторах и подаётся на инвертор, осуществляющий обратное преобразование в переменное стабилизированное выходное напряжение. Инверторные стабилизаторы кардинально отличаются от релейных, тиристорных и электромеханических по внутреннему строению. В частности, в них отсутствует автотрансформатор и любые подвижные элементы, в том числе и реле. Соответственно, стабилизаторы двойного преобразования избавлены от недостатков, присущих трансформаторным моделям.
Преимущества.
Алгоритм работы этой группы устройств исключает трансляцию любого внешнего возмущающего воздействия на выход, что обеспечивает полную защиту от большинства проблем электроснабжения и гарантирует питание нагрузки напряжением идеальной синусоидальной формы со значением максимально приближенным к номинальному (точность ±2%). Кроме того, инверторная топология устраняет все недостатки характерные другим принципам стабилизации электрической энергии и обеспечивает моделям, реализованным на её базе, уникальное быстродействие – стабилизатор реагирует на изменение входного сигнала мгновенно, без задержек во времени (0 мс)!
Другие важные преимущества инверторных стабилизаторов:
- максимально широкие границы рабочего сетевого напряжения – от 90 до 310 В, при этом идеальная синусоидальная форма выходного сигнала сохраняется во всем указанном диапазоне;
- непрерывное бесступенчатое регулирование напряжения – исключает ряд неприятных эффектов, связанных с переключением порогов стабилизации в электронных (релейных и полупроводниковых) моделях;
- отсутствие автотрансформатора и подвижных механических контактов – повышает ресурс работы и снижает массу изделия;
- наличие входного и выходного фильтров высоких частот – эффективно подавляют возникающие помехи (присутствуют не во всех моделях, характерны в частности для продукции ГК «Штиль» – ведущего производителя инверторных стабилизаторов).
Возникает закономерный вопрос — есть ли недостатки у инверторных устройств? Единственным и в то же время спорным недостатком является более высокая цена. Но учитывая технические требования современной бытовой техники и одновременно сохраняющуюся тенденцию перепадов сетевого напряжения, инверторные стабилизаторы сегодня являются самым экономически оправданным вариантом для постоянного пользования как в частных домах и загородных коттеджах, так и на промышленных объектах. Они гарантируют устойчивое, корректное функционирование дорогостоящей бытовой техники и чувствительных электронных устройств при любом качестве питающей электросети.
Рисунок 4 – Схема инверторного стабилизатора напряжения
Подробнее по этой теме читайте ниже:
Инверторные стабилизаторы напряжения «Штиль». Модельный ряд.
Как пользоваться инерционным стабилизатором
Как оказалось, пользоваться инерционным стабилизатором намного проще, чем традиционным стедикамом. Жёсткий инерционный стабилизатор всегда мгновенно готов к работе, вследствие отсутствия затухающих колебаний, свойственных стедикамам маятникового типа.
При наборе скорости, оператору достаточно твёрже сжать ручку девайса, и ослабить хват, как только скорость движения стабилизируется, а траектория станет прямолинейной.
Вес, балансирующей в руке конструкции, позволяет легко почувствовать положение камеры относительно горизонта через тактильные ощущения. Именно для улучшения тактильных ощущений, ручка удалена от центра тяжести системы на большее расстояние, чем в профессиональных видеокамерах.
Устранение помех
Принцип работы стабилизаторов построен на методе обратной связи. На первом этапе напряжение подается на трансформатор. Если его предельное значение превышает норму, то в работу вступает диод. Соединен он напрямую с транзистором по цепи. Если рассматривать систему переменного тока, то напряжение дополнительно фильтруется. В данном случае конденсатор исполняет роль преобразователя.
После того как ток пройдет резистор, он вновь возвращается на трансформатор. В результате номинальная величина нагрузки изменяется. Для устойчивости процесса в сети имеется автоматика. Благодаря ей конденсаторы не перегреваются в коллекторной цепи. На выходе сетевой ток проходит по обмотке через другой фильтр. В конечном счете напряжение становится выпрямленным.