Маркировка smd-резисторов: как определить назначение компонента

Основные виды и размеры SMD приборов

Корпуса компонентов для микроэлектроники, имеющие одинаковые номинальные значения, могут отличаться друг от друга габаритами. Их габариты определяются прежде всего по типовому размеру каждого. К примеру: резисторы обозначаются типовыми размеры от «0201» до «2512». Данные 4 цифры в маркировке SMD компонента обозначают кодировку, которая указывает длину и ширину прибора в дюймовом измерении. В размещенной таблице, типовые размеры указаны также и в мм.

Маркировка SMD компонентов — резисторы

Прямоугольные чип-резисторы и керамические конденсаторы
Типоразмер L, мм (дюйм) W, мм (дюйм) H, мм (дюйм) A, мм Вт
0201 0.6 (0.02) 0.3 (0.01) 0.23 (0.01) 0.13 1/20
0402 1.0 (0.04) 0.5 (0.01) 0.35 (0.014) 0.25 1/16
0603 1.6 (0.06) 0.8 (0.03) 0.45 (0.018) 0.3 1/10
0805 2.0 (0.08) 1.2 (0.05) 0.4 (0.018) 0.4 1/8
1206 3.2 (0.12) 1.6 (0.06) 0.5 (0.022) 0.5 1/4
1210 5.0 (0.12) 2.5 (0.10) 0.55 (0.022) 0.5 1/2
1218 5.0 (0.12) 2.5 (0.18) 0.55 (0.022) 0.5 1
2010 5.0 (0.20) 2.5 (0.10) 0.55 (0.024) 0.5 3/4
2512 6.35 (0.25) 3.2 (0.12) 0.55 (0.024) 0.5 1
Цилиндрические чип-резисторы и диоды
Типоразмер Ø, мм (дюйм) L, мм (дюйм) Вт
0102 1.1 (0.01) 2.2 (0.02) 1/4
0204 1.4 (0.02) 3.6 (0.04) 1/2
0207 2.2 (0.02) 5.8 (0.07) 1

SMD конденсаторы

Конденсаторы выполненные из керамики по размеру одинаковы с резисторами, что касается танталовых конденсаторов, то они определяются по своей, собственной шкале типовых размеров:

Танталовые конденсаторы
Типоразмер L, мм (дюйм) W, мм (дюйм) T, мм (дюйм) B, мм A, мм
A 3.2 (0.126) 1.6 (0.063) 1.6 (0.063) 1.2 0.8
B 3.5 (0.138) 2.8 (0.110) 1.9 (0.075) 2.2 0.8
C 6.0 (0.236) 3.2 (0.126) 2.5 (0.098) 2.2 1.3
D 7.3 (0.287) 4.3 (0.170) 2.8 (0.110) 2.4 1.3
E 7.3 (0.287) 4.3 (0.170) 4.0 (0.158) 2.4 1.2

Катушки индуктивности и дроссели SMD

Индуктивные катушки могут быть выполнены в различных конфигурациях корпуса, но их значение индицируется также, исходя из типоразмеров. Такой принцип маркировки SMD и расшифровки кодовых обозначений, дает возможность значительно упростить монтаж элементов на плате в автоматическом режиме, а радиолюбителю свободнее ориентироваться.

dr>

Моточные компоненты, такие как катушки, трансформаторы и прочие, которые мы в большинстве случаев изготавливаем собственноручно, могут просто не уместится на плате. Поэтому такие изделия, также выпускаются в компактном исполнении, которые можно установить на плату.

Определить какая именно катушка требуется вашему проекту, лучше всего воспользоваться каталогом и там подобрать требующийся вариант по типовому размеру. Типовые размеры, определяют с использованием кодового обозначения маркированного 4 числами (0805). Где значение «08» определяет длину, а число «05» показывает ширину в дюймовом измерении. Фактические габариты такого SMD компонента составят 0.08х0.05 дюйма.

Диоды и стабилитроны в корпусе SMD

Что касается диодов, то они также выпускаются в корпусах как цилиндрической формы так и в виде многогранника. Типовые размеры у этих компонентов задаются идентично индуктивным катушкам, сопротивлениям и конденсаторам.

Диоды, стабилитроны, конденсаторы, резисторы
Тип корпуса L* (мм) D* (мм) F* (мм) S* (мм) Примечание
DO-213AA (SOD80) 3.5 1.65 048 0.03 JEDEC
DO-213AB (MELF) 5.0 2.52 0.48 0.03 JEDEC
DO-213AC 3.45 1.4 0.42 JEDEC
ERD03LL 1.6 1.0 0.2 0.05 PANASONIC
ER021L 2.0 1.25 0.3 0.07 PANASONIC
ERSM 5.9 2.2 0.6 0.15 PANASONIC, ГОСТ Р1-11
MELF 5.0 2.5 0.5 0.1 CENTS
SOD80 (miniMELF) 3.5 1.6 0.3 0.075 PHILIPS
SOD80C 3.6 1.52 0.3 0.075 PHILIPS
SOD87 3.5 2.05 0.3 0.075 PHILIPS

Транзисторы в корпусе SMD

СМД транзисторы выполнены в корпусах, которые соответствуют их максимальном мощности. Корпуса этих полупроводниковых элементов символично можно разделить на два вида: SOT и DPAK.

Маркировка SMD компонентов

Маркировка электронных приборов в современной технике уже требует профессиональных знаний, и так просто, с кондачка в ней тяжело разобраться, особенно начинающему радиолюбителю. В сравнении с деталями выпускаемыми при Советском Союзе, где маркировка номинального значения и тип прибора наносилась в текстовом варианте, сейчас это просто мета паяльщика. Не надо было держать под рукой кипы справочной литературы, чтобы определить назначение и параметры того или иного прибора.

Однако, технологические процессы в промышленности не стоят на месте и автоматизация производства определяет свои правила. Именно SMD детали в поверхостном монтаже играют главную роль, а роботу нет никакого дела до маркировки деталей заправленных в машину, что туда поместили, то он и припаяет. Маркировка нужна специалисту, который обслуживает этого робота.

Скачать программу для расшифровки обозначения SMD деталей

Как себя проверить

Если в навыке расшифровки кодов вы пока неуверены, есть два способа проверить сопротивление резистора. Первый — программный, второй — при помощи мультиметра. Второй — более надежный, так как вы видите реальное положение вещей, а заодно и проверяете сопротивление элемента.

Одна из программ по расшифровке кодов резисторов «Резистор 2.2»: цветовая маркировка

Найти программу расшифровки кодов резисторов просто — по запросу выскакивает не один десяток. Они несложные, отличаются только масштабами баз данных. Не в каждой можно найти все варианты кодов, но популярные есть везде. В этих программах сначала выбирается тип кодировки (буквы или полоски), а затем вносятся все данные. То, что вы вводите отображается в специальном окошке — чтобы можно было визуально проверить правильность введенной информации. После ввода данных нажимаете кнопку, программа выдает вам номинал и допуск. Сравниваете с тем, что получилось у вас.

Проверяем сопротивление при помощи мультиметра

Проверить насколько правильно вы по кодировке определили сопротивление резистора можно и при помощи мультиметра. Для этого его выставляем в режим «изменение сопротивлений». Диапазон подбираем в зависимости от того, что насчитали. Один щуп прикладываем к одному выводу, второй — к другому. На экране высвечивается сопротивление. Оно может отличаться от высчитанного. Разница зависит от допуска. Чем больше допуск, тем больше может быть разница. Но в любом случае показания должны быть сравнимы с найденным номиналом. Подробности смотрите в видео.

Маркировка чип-резисторов, номиналы

Прочитав обозначение 2r00 резистора, как определить, на какое сопротивление он рассчитан? Для этого существует маркировка smd резисторов. Это можно сделать с помощью таблиц, где указан перечень характеристик, согласно обозначению на корпусе. Также цифровую маркировку поможет расшифровать программа онлайн-калькулятор. Интерфейс этого сетевого инструмента выглядит просто и работает быстро. Достаточно для этого вбить в окна полей необходимый запрос.

Онлайн-калькулятор для расчёта цифровых обозначений

Параллельное соединение резисторов

При визуальном осмотре элемента маркировка смд резисторов может иметь следующие знаки, нанесённые на корпус:

  • цифровые маркировки;
  • буквенные символы;
  • цветовые маркеры.

Они наносятся непосредственно на верхнюю часть корпуса и имеют различное значение.

Цифровые маркировки

Код, нарисованный на резистивном элементе, может состоять из трёх или четырёх цифр. Трёхцифровое обозначение расшифровывается легко. К примеру, у резистора 103 сколько ом величина сопротивления, указывают две первые цифры, третья – это множитель, на который умножается двухзначное число. В математике это показатель степени числа с основанием 10.

Внимание! Множитель в этом случае – степень n, в которую необходимо возвести число 10. Следовательно, чип-резистор 104 имеет номинал 10*104 = 100 кОм

Маркировка при помощи трёх цифр позиционирует элементы, имеющие допуск погрешности: 2; 5; 10%.

Трёхзначное цифровое обозначение

Маркировка резисторов меньше 1 Ом

Соответствующая отметка на детали, как и для сопротивлений менее 10 Ом, требует ввода в код буквы R. Она ставится либо впереди двух цифр, либо в середине и заменяет собой десятичную точку.

Обозначение SMD-резисторов

Цветовое обозначение

Цветовой способ маркировки резисторов применяется для элементов, имеющих маленький типоразмер. Однако для смд-сопротивлений он не применяется. По цветной палитре колец можно определить: номинал, множитель и температурный коэффициент (ТКС). Цветное кольцо, опоясывающее элемент, имеет определённый цвет, ширину и месторасположение.

Некоторые особенности при нанесении цветной маркировки, которые могут интерпретироваться следующим образом:

  1. У деталей с погрешностью 20% 3 кольца. Два первых – величина сопротивления, третье – множитель.
  2. Четыре кольца означают, что допуск отличен от 20% и обозначен четвёртым кольцом.
  3. Пять цветных колец имеют другое значение. Три первых – номинал детали, четвёртое – значение множителя, пятое – величина допуска в 0,005%.

ТКС, он же TCR (Temperature Coefficient of Resistance), показывает, насколько поменяется величина сопротивления двухполюсника при изменении температуры в один градус. Температура может меняться в любом направлении.

Шестая полоса (редкий случай) укажет значение TCR для резистора. Использование в схемах чувствительных к изменению температурного режима окружающей среды требует установки элемента с определённым значением TCR.

Расшифровка цветных маркеров

Буквенная маркировка

Стандарт EIA – 96 допускает при кодировке SMD-чипов резистивной направленности ввод буквы третьим символом.

Расшифровка мнемонического обозначения буквами

При требовании к допуску в 1% маркировка имеет трёхзначные или четырёхзначные обозначения на корпусе деталей.

Две цифры и буква у таких smd резисторов, имеющих типоразмер 0603, распределены следующим образом:

  • две первых цифры – сопротивление в Ом;
  • буква – это множитель: S, R, B, C, D, E, F.

Данные по сопротивлениям с трёхзначным кодом определяют по таблицам.

Таблица кодов для первых двух цифр при допуске в 1%

Нумерация с использованием 4-х цифр при данном допуске отклонения от точности означает:

  • три первых цифры – мантисса (дробная часть десятичного числа);
  • четвёртая цифра – показатель степени числа 10.

Например, резистивный элемент с меткой 3501 обладает номиналом 350*10 = 3,5 кОм.

Интересно. Когда на детали нарисован ноль «0», это значит смд-резистор имеет нулевое значение сопротивления. Это просто перемычка. При измерении тестером результат не должен вводить в заблуждение – элемент исправен.

При замене неисправных элементов, расположенных на печатной плате, правильное определение номинального значения поможет устранить повреждение. В случае необходимости можно smd-компоненты заменить на детали аналогичных параметров, расшифровав цифровые и буквенные коды.

Цветовая маркировка резисторов

Первые полосы у резисторов обозначают цифры. Каждой цифре присвоен определенный цвет:

Цвет Значение
Черный
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Голубой 6
Фиолетовый 7
Серый 8
Белый 9

После цифр следует множитель (у резисторов с тремя и четырьмя полосками — третья полоса, у резисторов с пятью и шестью полосками — четвертая полоса). Множитель умножает или делит число, полученное из цифр предыдущих полосок на определенный коэффициент. После этого можно определить наминал сопротивления (Ом, кОм, МОм, ГОм).

Таблица соответствия множителя конкретному цвету полосы на корпусе резистора:

Цвет Коэффициент
Золотой ÷10
Серебристый ÷100
Черный x1
Коричневый x10
Красный x100
Оранжевый x1000
Желтый x10000
Зеленый x100000
Голубой x1000000
Фиолетовый x10000000
Серый x100000000
Белый x1000000000

После множителя следует полоса обозначающая допуски (погрешность) данного сопротивления, где каждый цвет имеет свой допуск. У резисторов с тремя полосами погрешность всегда равна ±20%.

Таблица соответствия допуска конкретному цвету полосы на корпусе резистора:

Цвет Коэффициент (%)
Серебристый ±10
Золотой ±5
Красный ±2
Коричневый ±1
Зеленый ±0.5
Голубой ±0.25
Фиолетовый ±0.15
Серый ±0.05

В случае с шести полосным резистором, последняя полоса означает температурный коэффициент (ppm/ºC), где каждый цвет имеет также свое значение:

  • Коричневый = 100 ppm/ºC.
  • Красный = 50 ppm/ºC.
  • Желтый = 25 ppm/ºC.
  • Оранжевый = 15 ppm/ºC.
  • Синий = 10 ppm/ºC.
  • Фиолетовый = 5 ppm/ºC.
  • Белый = 1 ppm/ºC.

Зная цветовую маркировку резисторов можно точно рассчитать их сопротивление. А упростить процесс подсчетов помогут специальные онлайн калькуляторы.

Керамические компоненты

В керамических элементах в качестве диэлектрика применяется фарфор либо аналогичные неорганические материалы. Основное достоинство таких изделий заключается в устойчивости к высоким температурам и возможности производства изделий крайне малых размеров.

Важно! SMD конденсаторы керамического типа также устанавливаются методом пайки на печатную плату. Визуально такой элемент, как правило, напоминает небольшой кирпичик, к которому с торцов припаиваются контактные площадки

Визуально такой элемент, как правило, напоминает небольшой кирпичик, к которому с торцов припаиваются контактные площадки.


Керамические SMD конденсаторы

В отличие от радиодеталей стандартных размеров SMD элементы небольшого размера вначале приклеивают к плате, а уже потом припаивают выводы. На производстве керамические изделия этого типа устанавливаются специальными автоматами.

Маркировка керамических SMD конденсаторов

Небольшие керамические конденсаторы SMD маркируются буквенно-цифровым кодом, состоящим из 3 символов. Первый указывает на минимальное значение рабочей температуры, например:

  • Z — от 10 °С;
  • Y — от −30 °С;
  • X — от 55 °С.


Маркировка SMD конденсаторов

Второй символ указывает на верхний предел нагрева радиодетали:

  • 2 — до 45 °С;
  • 4 — до 65 °С;
  • 5 — до 85 °С;
  • 6 — до 105 °С;
  • 7 — до 125 °С;
  • 8 — до 150 °С;
  • 9 — до 200 °С.

Третий символ указывает на точность электронного компонента:

  • A — до ± 1,0 %;
  • B — до ± 1,5 %;
  • C — до ± 2,2 %;
  • D — до ± 3,3 %;
  • E — до ± 4,7 %;
  • F — до ± 7,5 %;
  • P — до ± 10 %;
  • R — до ± 15 %;
  • S — до ± 22 %;
  • T — до ± 33 %;
  • U — до ± 56 %;
  • V — до ± 82 %.

Ёмкость небольших керамических SMD конденсаторов указывается в пикофарадах. Чтобы сэкономить площадь небольшого радиоэлемента, основное число мантисса закодировано в букве латинского алфавита. В таблице, указанной ниже, приведен полный список подобных обозначений.


Таблица с закодированными символами

После цифры указывается множитель, например, обозначение на керамическом конденсаторе Х3 означает, что конденсатор имеет емкость 7,5 * 10 ^ 3 Pf.

Обратите внимание! Перед кодом, обозначающим емкость керамического SMD конденсатора, может стоять латинская буква, которая указывает на бренд производителя электронного компонента. Если площадь керамического конденсатора этого типа достаточно велика, то на ней может быть отображен тип диэлектрика

С этой целью применяются:

Если площадь керамического конденсатора этого типа достаточно велика, то на ней может быть отображен тип диэлектрика. С этой целью применяются:

  • NP0. Диэлектрическая проницаемость такого элемента находится на крайне низком уровне. Основное достоинство компонентов этого типа заключается в хорошей устойчивости к резким температурным перепадам. Недостаток элементов, в которых используется диэлектрик этого типа — высокая цена;
  • X7R. Среднего качества диэлектрик. Изделия, в которых используется изолятор этого типа, не обладают отличными характеристиками по устойчивости к пробою, но в среднем температурном диапазоне они способны проработать значительно дольше многих, более дорогих элементов;
  • Z5U. Диэлектрик с высокими значениями электрической проницаемости, но обратной стороной этого показателя является слишком большая емкостная погрешность;
  • Y5V. Изолирующий материал обладает примерно такими же характеристиками, как и Z5U. По стоимости этот диэлектрик является самым дешевым, поэтому электрические компоненты, изготовленные на его основе, реализуется по самым низким ценам.

Вам это будет интересно  Какова единица измерения силы тока

Сгоревший SMD конденсатор

Учитывая все выше изложенное, можно быть уверенным в том, что если SMD конденсатор не подгорел или не изменил цвет поверхности по другим причинам, то всегда можно определить его номинал по нанесенной на его корпусе маркировке.

Пассивные компоненты: Конденсаторы

ТИП: Расшифровка Типа:
SC Ceramic Chip CapacitorКерамический чип конденсатор
Размер (дюймы) Размер (мм) Толщина компонента Ширина ленты Шаг компонента в ленте Кол-во в стандартной упаковке(180 мм/7 дюймов)лента бумажная Кол-во в стандартной упаковке(180 мм/7 дюймов)лента пластиковая
01005 0402 0.2 мм ± 0.03 8 мм 2 мм 20000
0201 0603 0.3 мм ± 0.03 8 мм 2 мм 15000
0402 1005 0.5 мм ± 0.1 8 мм 2 мм 10000
0603 1608 0.8 мм ± 0.1 8 мм 4 мм 4000
0805 2012 0.6 – 1.25 мм 8 мм 4 мм 4000 3000
1206 3216 0.6 – 1.25 мм 8 мм 4 мм 4000 3000
1210 3225 1.25 мм – 1.5 мм 8 мм 4 мм 3000
1812 4532 2 мм (Макс.) 12 мм 8 мм 1000
2225 5664 2 мм (Макс.) 12 мм 8 мм 1000

Проверка на обрыв

Действия производятся в следующем порядке:

  1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1».

    Рис. 5. Установка режима (1) и подключение щупов (2 и 3)

  2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).

Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

  1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы. https://www.youtube.com/embed/ZscbCkGG-9o

Сантехника

Основной принцип скандинавского стиля – умеренность во всем. Небольшая ванна (или душевая кабина), умывальник, унитаз – все, что нужно для ванной комнаты. Страны Скандинавии – Норвегия, Швеция и Дания – очень развиты, поэтому и дизайн интерьера, в том числе и сантехника, должны быть современными. 

Сегодня можно найти подвесные, угловые или встроенные модели, которые помогут не только выдержать стиль, но и сэкономить дополнительное пространство. В плане цвета оптимальный вариант – классическая белая сантехника. Комплектующие можно подобрать из матового металла. Такой стиль не терпит излишнего декора и впечатляющих экспериментов: чем проще, тем лучше.

Единственным исключением может стать ванна в стиле спа, рассчитанная на достаточную площадь помещения. Расположите ванну по центру и погрузите ее в пол. Наполнив ее ароматной пеной и приукрасив комнату соответствующими косметическими средствами, вы действительно почувствуете себя как в спа-салоне. Усилить эффект скандинавского стиля поможет небольшая дровяная печь и поленница. 

Таблица кодов SMD резисторов и их значений

Код smd Значение Код smd Значение Код smd Значение Код smd Значение
R10 0.1 Ом 1R0 1 Ом 100 10 Ом 101 100 Ом
R11 0.11 Ом 1R1 1.1 Ом 110 11 Ом 111 110 Ом
R12 0.12 Ом 1R2 1.2 Ом 120 12 Ом 121 120 Ом
R13 0.13 Ом 1R3 1.3 Ом 130 13 Ом 131 130 Ом
R15 0.15 Ом 1R5 1.5 Ом 150 15 Ом 151 150 Ом
R16 0.16 Ом 1R6 1.6 Ом 160 16 Ом 161 160 Ом
R18 0.18 Ом 1R8 1.8 Ом 180 18 Ом 181 180 Ом
R20 0.2 Ом 2R0 2 Ом 200 20 Ом 201 200 Ом
R22 0.22 Ом 2R2 2.2 Ом 220 22 Ом 221 220 Ом
R24 0.24 Ом 2R4 2.4 Ом 240 24 Ом 241 240 Ом
R27 0.27 Ом 2R7 2.7 Ом 270 27 Ом 271 270 Ом
R30 0.3 Ом 3R0 3 Ом 300 30 Ом 301 300 Ом
R33 0.33 Ом 3R3 3.3 Ом 330 33 Ом 331 330 Ом
R36 0.36 Ом 3R6 3.6 Ом 360 36 Ом 361 360 Ом
R39 0.39 Ом 3R9 3.9 Ом 390 39 Ом 391 390 Ом
R43 0.43 Ом 4R3 4.3 Ом 430 43 Ом 431 430 Ом
R47 0.47 Ом 4R7 4.7 Ом 470 47 Ом 471 470 Ом
R51 0.51 Ом 5R1 5.1 Ом 510 51 Ом 511 510 Ом
R56 0.56 Ом 5R6 5.6 Ом 560 56 Ом 561 560 Ом
R62 0.62 Ом 6R2 6.2 Ом 620 62 Ом 621 620 Ом
R68 0.68 Ом 6R8 6.8 Ом 680 68 Ом 681 680 Ом
R75 0.75 Ом 7R5 7.5 Ом 750 75 Ом 751 750 Ом
R82 0.82 Ом 8R2 8.2 Ом 820 82 Ом 821 820 Ом
R91 0.91 Ом 9R1 9.1 Ом 910 91 Ом 911 910 Ом
Код smd Значение Код smd Значение Код smd Значение Код smd Значение
102 1 кОм 103 10 кОм 104 100 кОм 105 1 МОм
112 1.1 кОм 113 11 кОм 114 110 кОм 115 1.1 МОм
122 1.2 кОм 123 12 кОм 124 120 кОм 125 1.2 МОм
132 1.3 кОм 133 13 кОм 134 130 кОм 135 1.3 МОм
152 1.5 кОм 153 15 кОм 154 150 кОм 155 1.5 МОм
162 1.6 кОм 163 16 кОм 164 160 кОм 165 1.6 МОм
182 1.8 кОм 183 18 кОм 184 180 кОм 185 1.8 МОм
202 2 кОм 203 20 кОм 204 200 кОм 205 2 МОм
222 2.2 кОм 223 22 кОм 224 220 кОм 225 2.2 МОм
242 2.4 кОм 243 24 кОм 244 240 кОм 245 2.4 МОм
272 2.7 кОм 273 27 кОм 274 270 кОм 275 2.7 МОм
302 3 кОм 303 30 кОм 304 300 кОм 305 3 МОм
332 3.3 кОм 333 33 кОм 334 330 кОм 335 3.3 МОм
362 3.6 кОм 363 36 кОм 364 360 кОм 365 3.6 МОм
392 3.9 кОм 393 39 кОм 394 390 кОм 395 3.9 МОм
432 4.3 кОм 433 43 кОм 434 430 кОм 435 4.3 МОм
472 4.7 кОм 473 47 кОм 474 470 кОм 475 4.7 МОм
512 5.1 кОм 513 51 кОм 514 510 кОм 515 5.1 МОм
562 5.6 кОм 563 56 кОм 564 560 кОм 565 5.6 МОм
622 6.2 кОм 623 62 кОм 624 620 кОм 625 6.2 МОм
682 6.8 кОм 683 68 кОм 684 680 кОм 685 6.8 МОм
752 7.5 кОм 753 75 кОм 754 750 кОм 755 7.5 МОм
822 8.2 кОм 823 82 кОм 824 820 кОм 815 8.2 МОм
912 9.1 кОм 913 91 кОм 914 910 кОм 915 9.1 МОм

Надежность от Panasonic: технология мягких выводов (Soft Termination Technology) и сертификация AEC-Q200

В большинстве приложений SMD-резисторы распаиваются на жестких печатных платах, например, на платах из стеклотекстолита FR4. Однако, несмотря на жесткую основу печатной платы, SMD-резисторы сталкиваются с механическими напряжениями, вызванными двумя основными причинами, это:

  • механическая деформация печатных плат при ударных и вибрационных нагрузках;
  • деформация, вызванная тепловым расширением при повышенных и пониженных температурах.

В результате деформации печатной платы SMD-компоненты, в том числе резисторы, могут растрескиваться. На рисунке 1 поясняется механизм растрескивания традиционного SMD-резистора при тепловом расширении печатной платы. В традиционных резисторах внутренние электроды напрямую подключаются ко внешним электродам, образуя жесткое соединение. Чаще всего в качестве подложки для SMD-резисторов используют керамику на основе поликристаллического оксида алюминия Al2O3 (Alumina) . Коэффициент теплового расширения этого материала составляет 7,6 ppm/°С. В то же время коэффициент теплового расширения FR4 составляет 15 ppm/°С. Такое рассогласование температурных коэффициентов является вполне приемлемым для многих приложений, однако при работе в широком диапазоне рабочих температур разница в физическом расширении может привести к растрескиванию. Фотография такой ситуации представлена на рисунке 2.

Рис. 1. Разница температурных коэффициентов расширения может привести к растрескиванию резистора

Рис. 2. Растрескивание резистора при разогреве платы

При растрескивании происходит либо полный, либо частичный разрыв электрической связи. При неполном растрескивании резистор может вести себя абсолютно непредсказуемо, например, электрическая связь с этим компонентом может пропадать и появляться из-за локальных перегревов или элементарной тряски. Разумеется, такой сценарий является крайне нежелательным. Для решения проблемы была предложена технология мягких выводов.

Суть решения заключается в том, что между внутренними и внешними жесткими металлическими электродами размещают буферный слой из эластичного проводящего полимерного материала. Благодаря своей эластичности этот буферный слой компенсирует разницу в коэффициентах расширения. Структура резистора с мягкими выводами показана на рисунке 3.

Рис. 3. Благодаря своей эластичности буферный слой из проводящего полимера предотвращает растрескивание

Все ведущие производители имеют в своей линейке продукции отдельные серии резисторов, выполненные по технологии мягких выводов. Однако именно Panasonic использует эту технологию во всех своих SMD-резисторах, что является одной из причин их повышенной надежности.

Как показывают испытания, технология мягких выводов от Panasonic отличается высокой эффективностью, благодаря таким показателям как:

двукратное уменьшение числа полных растрескиваний по сравнению с традиционными резисторами с жесткими выводами при длительных сроках службы (рисунок 4);

Рис. 4. Уменьшение числа полных растрескиваний благодаря использованию технологии мягких выводов от Panasonic

двукратное уменьшение степени растрескивания (отношение длины трещины к полной длине контакта) по сравнению с традиционными резисторами с жесткими выводами при длительных сроках службы (рисунок 5).

Рис. 5. Уменьшение степени растрескивания (отношение длины трещины к полной длине контакта) благодаря использованию технологии мягких выводов от Panasonic

Для большей наглядности на рисунке 6 представлены фотографии резисторов после прохождения ими различного числа тестовых циклов.

Рис. 6. Увеличение степени растрескивания при прохождении испытаний

Второй особенностью, присущей очень многим сериям резисторов от Panasonic, является их сертификация в соответствии с AEC-Q200. Это вовсе не означает, что они целенаправленно производятся для автомобильной отрасли. Дело в том, что к электронным компонентам для автомобильных приложений традиционно предъявляют повышенные требования. Зная это, разработчики очень часто выбирают компоненты с меткой «Automotive», даже если они проектируют электронный блок для промышленного применения. Именно по этой причине сертификация AEC-Q200 в последнее время становится своего рода подтверждением высокого качества и надежности.

Кроме того, компания Panasonic выпускает специальные серии резисторов с защитой от серосодержащих соединений и с повышенной устойчивостью к мощным импульсам. Подробнее о них рассказывается в следующих разделах статьи.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий